*******************
So...r= xi+yj+zk is the vector and r=√(x^2+y^2+z^2) (what the textbook calls ρ-notice I didn't write this problem so I'm not the only one who prefers r to rho is three dimensions). So we get a new vector field rxi+ryj+rzk, and
(rxi+ryj+rzk)=∂(rx)/∂x+∂(ry)/∂y+∂(rz)/∂z=(x∂r/∂x+y∂r/∂y+z∂r/∂z)+r(∂x/∂x+∂y/∂y+∂z/∂z
(by the product rule) =(x∂r/∂x+y∂r/∂y+z∂r/∂z)+3rNow, ∂r/∂x=x/r, ∂r/∂y=y/r and ∂r/∂z=z/r, so (x∂r/∂x+y∂r/∂y+z∂r/∂z)= (x^2+y^2+z^2)/r=r,
(rxi+ryj+rzk)=4r and so
(9rr)=9x4r=36r.
(rxi+ryj+rzk)=4r and so
(9rr)=9x4r=36r.
No comments:
Post a Comment